Xu Luo
Średnia masa uszkodzenia i średni czas naprawy uszkodzenia: parametryłączące niezawodność, obsługiwalność i utrzymywalność
Jak dotąd w inżynierii niezawodności nie istniały parametry łączące niezawodność, obsługiwalność i utrzymywalność. Wskaźniki takie jak gotowość mogą być stosowane w celu sprawdzenia zgodności tych cech RAM (Reliability, Availability, Maintainability – Niezawodność, Gotowość, Obsługiwalność) dopiero po uzyskaniu indywidualnego wskaźnika każdej charakterystyki, takich jak MTBF, MTTR, itp. W ten sposób dostępne metody równoważenia owych trzech cech nie są wystarczająco skuteczne i bezpośrednie w fazie projektowania produktu . Niniejszy artykuł przedstawia pojęcia średniej masy uszkodzenia i średniego czasu naprawy uszkodzenia. Badając zależność prawdopodobieństwa uszkodzenia i masy produktu, uzyskuje się cechę łączącą niezawodność i utrzymywalność. Podobnie, badając zależność prawdopodobieństwa uszkodzenia i średniego czasu naprawy produktu, uzyskuje się cechę łączącą niezawodność i obsługiwalność. Na bazie powyższych definicji osiągnięto kompromisowe podejście do niezawodności, obsługiwalności i utrzymywalności podczas fazy projektowania. Skuteczności obu nowych koncepcji dowodzi przykład równoważenia niezawodności i obsługiwalności podsystemu stacji kosmicznej.
Mean failure mass and mean failure repair time: parameters linking reliability, maintainability and supportability
Up to now, no parameters linking reliability, maintainability and supportability directly are available in reliability engineering. Index such as availability can be used to check the compatibility of those RAM features only after individual index of every characteristic is obtained such as MTBF, MTTR, etc. Thus available methods to balance those three features are not efficient and direct during the product design phase. In this paper, concepts of mean failure mass and mean failure repair time are presented. By investigating the relationship of the failure probability and the mass of a product, a feature linking reliability and supportability is obtained. Similarly, by studying the relationship of the failure probability and the mean time to repair of a product, a feature linking reliability and maintainability is obtained. Based on above definitions, an approach of reliability, maintainability and supportability trade-off during design phase is achieved. Effectiveness of both of the new concepts is demonstrated by an example of balancing the maintainability and supportability of a subsystem of a space station.
Metoda rozmieszczania przyrządów pokładowych oparta na pojęciach potencjałowego pola widoczności oraz potencjałowego pola czynnika ludzkiego
The visibility is the basic condition for cabin equipment location. For the description of human, object and obstacle, the humanfactor potential field concept is proposed in this paper, concluding the visibility potential field, the reachability potential field. The cabin equipment layout problem is modeled based on the basic visibility potential field model. The optimal layout optimization method is studied based on the particle swarm optimization (PSO) algorithm by natural selection. Finally, the applicability of the proposed idea is illustrated by numerical studies.
One cabin equipment location method based on the visibility human-factor potential field
Widoczność jest podstawowym warunkiem przy projektowaniu rozmieszczenia przyrządów pokładowych. W przedstawionej pracy zaproponowano pojęcie potencjałowego pola czynnika ludzkiego (human-factor potential field, HFPF), które służy do opisu czynnika ludzkiego, przedmiotów oraz przeszkód. HFPF obejmuje pojęcia potencjałowego pola widoczności oraz potencjałowego pola dostępu. Problem umiejscowienia elementów wyposażenia kabiny zamodelowano na podstawie podstawowego modelu potencjałowego pola widoczności. Metodę optymalizacji rozmieszczenia elementów wyposażenia badano w oparciu o algorytm optymalizacji rojem cząstek (PSO), metodą naturalnej selekcji. Zastosowanie proponowanej koncepcji zilustrowano na przykładzie badań numerycznych.
Virtual–real fusion maintainability verification based on adaptive weighting and truncated spot method
Maintainability is an important general quality characteristic of products. Insufficient maintainability will lead to long maintenance time and high maintenance cost, thus affecting the availability of products. Maintainability verification is an important means to ensure maintainability meets design requirements. However, the cost of traditional real maintainability verification method is very high, and the virtual maintenance method has insufficient verification accuracy due to the lack of large maintenance force feedback when the human body is moving. In order to reduce the evaluation error and test sample size, the paper conducts maintainability verification based on the mixed physical and virtual maintainability test scenarios. Aiming at the problem that traditional methods are difficult to deal with the real test information and synchronous virtual simulation information in the test process, this study proposes a virtual–real fusion maintainability evaluation algorithm based on adaptive weighting and truncated SPOT (Sequential Posterior Odd Test) method. It can weigh real test information and virtual human simulation information adaptively to obtain a virtual–real fusion maintainability test sample. Then, the SPOT method is used to evaluate the maintainability of small samples. The adjustment of valve clearance, replacement of air filter element and replacement of starting motor maintenance tasks of ship engine are taken as examples for demonstration. The virtual–real fusion and virtual maintainability verification methods are respectively used for verification, and compared with the physical maintenance scenario constructed by 3D printing, indicating that the accuracy of virtual–real fusion maintainability test verification is 89%, while the virtual maintainability verification is only 33%.