Hong-Zhong Huang
Reliability Based Optimal Preventive Maintenance Policy of Series-parallel systems
To reduce the maintenance cost and improve the effectiveness of the maintenance activities in series-parallel systems, a preventive maintenance (PM) decision model for series-parallel systems subject to reliability was developed. This model considered the effect of failure maintenance on PM cycle and the restriction of system reliability in maintenance decision making, thus can help decision-maker to arrange appropriate and effective maintenance activities. Finally, an example was given to validate the proposed model.
Hybrydowy algorytm wzajemnej entropii do oceny niezawodności systemów typu konfiguracja-redundancja
Stosowane w praktyce inżynieryjnej różnorakie redundancje zwiększają dostępność danego systemu zarazem powiększając jego złożoność, co czyni niepewnymi ocenę niezawodności i wykrywanie uszkodzeń komponentów systemu. Wobec powyższego, poddano badaniom system typu konfguracja-redundancja oraz sformułowano jego funkcję niezawodności. Kiedy niedostępna jest wiedza na temat poprzednich uszkodzeń komponentów systemu, problem uszkodzeń systemu ma charakter problemu stochastycznego. Tymczasem, aby wyeliminować niepewność systemu, konieczne jest wykrycie uszkodzeń w serii komponentów. Zaproponowano model przewidywanej najkrótszej ścieżki oraz model wykrywania uszkodzeń mające służyć optymalizacji niezawodności. Metodę wzajemnej entropii wykorzystano jako algorytm heurystyczny do oceny niezawodności systemu i wykrywania uszkodzeń komponentów. Zastosowane stochastyczne podejście do generowania próbek umożliwia otrzymanie ważnych próbek. W celu poprawienia wydajności obliczeniowej, stworzono hybrydowy algorytm wzajemnej entropii, który łączy w sobie stochastyczne podejście do generowania próbek i metodę wzajemnej entropii. Wyniki numeryczne wskazują na potencjalną poprawę alokacji niezawodności złożonych systemów, która prowadziłaby do jak najlepszego działania wszystkich komponentów systemu.
Zastosowanie metody dekompozycji hierarchicznej do alokacji niezawodności w dużych systemach
Niezawodność stała się w ostatnich latach ważkim problemem, zwłaszcza w odniesieniu do dużych systemów składających się z wielu podsystemów, modułów i komponentów. Dążenie do osiągania niezawodności już na etapie projektu sprawiło, że coraz więcej uwagi zwraca się na alokację niezawodności. Jednakże poszukiwanie optymalnego programu alokacji niezawodności dla systemu o dużej liczbie podsystemów i części składowych nie jest sprawą prostą i problem ten należy do klasy problemów trudnych. Przeprowadzono wiele prac badających przydatność wydajnych obliczeniowo metod, np., algorytmu dokładnego, algorytmu heurystycznego czy algorytmu meta-heurystycznego, itp., do optymalizacji alokacji niezawodności systemu złożonego. I chociaż zaproponowane w dotychczasowych badaniach metody sprawdzają się w przypadku systemów składających się z umiarkowanej liczby elementów składowych, to wciąż jednak ciąży na nich "przekleństwo wymiarowości," które nie pozwala na ich łączenie w przypadku systemów składających się z dziesiątek/setek podsystemów i części składowych jakie znajdują zastosowanie w inżynierii przemysłowej. Aby zminimalizować ten niedostatek, zaproponowano strategię dekompozycji, w której problem alokacji niezawodności dla systemu o dużej liczbie komponentów jest rozkładany na zespół mniejszych, skoordynowanych podproblemów, które dają się rozwiązać w sposób obliczeniowo wydajny za pomocą tradycyjnego algorytmu optymalizacyjnego. W niniejszej pracy zastosowano metodę kaskadowania celów, jako wydajną metodę dekompozycji hierarchicznej, której użyto do rozkładu problemu alokacji niezawodności dużego systemu na zespół hierarchicznie uporządkowanych problemów optymalizacyjnych zgodnie z konfiguracją systemu. Wydajność i efektywność proponowanej metody ilustruje przykład numeryczny oraz studia porównawcze.
A hybrid cross-entropy algorithm for reliability assessment of confi guration-redundancy system
Engineering practices with various redundancies increase the availability of a system as well as complexity which bring the uncertainty of reliability estimation and failure detection of system components. Under such conditions, a confi gurationredundancy system is studied and the reliability function of the system is formulated. When no prior failure of system components is available, failure problem of system is a stochastic shortest path problem. Meanwhile to eliminate the uncertainty of system, it is necessary to detect failures series of components. The expected shortest path model and failure detecting model are proposed for system reliability optimization. The Cross-Entropy (CE) method is applied as a heuristic algorithm to estimate the system reliability and detect the failure of components. A stochastic sample generating approach is designed to obtain some valid samples. In order to improve the effi ciency of computing, a hybrid CE algorithm which combines the stochastic sample generating approach and the CE method is developed. Numerical results indicate potential improvements in reliability allocation of complex systems that would lead to the best performances of all system components.
A hierarchical decomposition approach for large system reliability allocation
Reliability has become a great concern in recent years, especially for large system consisting of a large number of subsystems, modules and components. To achieve the reliability goal in design stage, reliability allocation, a method to apportion the system target reliability amongst subsystems and components in a well-balanced way, has since received increasing attention. However, seeking the optimal reliability allocation scheme for a system with bunch of subsystems and components is not straightforward, and it is known as an NPhard problem. An abundance of work has been carried out to investigate the computational effi cient methods, e.g. exact algorithm, heuristic algorithm and meta-heuristic algorithm etc., to handle the optimization of reliability allocation for the complex system. Even though the proposed methods in past research work well for system consisting of a moderate set of components, they will still suffer "curse of dimensionality" and be impossible to converge if the system consisting of tens/hundreds of subsystems and components which maybe exist in industrial engineering. To mitigate the defi ciency, a decomposition strategy is proposed, in which the reliability allocation problem for the system with a large number of components is decomposed into a set of smaller, coordinated sub-problems which can be solved via traditional optimization algorithm in an computational effi cient manner. Target cascading method, as an effi cient hierarchical decomposition method, is employed in this paper to decompose the large system reliability allocation problem into a set of hierarchical optimization problems in according with the system confi guration. To illustrate the effi ciency and effectiveness of the proposed method, a numerical example is presented, as well as some comparative studies.
Projektowanie niezawodnościowe z wykorzystaniem kilku strategii utrzymania
Tradycyjna optymalizacja projektowania niezawodnościowego (RBDO) minimalizuje funkcję celu opisującą koszty w zależności od ograniczeń niezawodności. Ograniczenia niezawodności oparte są na modelach fizycznych, takich jak symulacja z wykorzystaniem metody elementów skończonych, których używa się do określania stanu komponentu lub systemu. Stąd niezawodność oznacza tu tzw. niezawodność fizyczną. Ograniczenia niezawodności są zazwyczaj statyczne i nie wyjaśniają problemów związanych z cyklem życia produktu. W niniejszej pracy zaproponowano kilka modeli optymalizacji projektowania niezawodnościowego wykorzystujących kilka strategii utrzymania. Koszt cyklu życia produktu w omawianych modelach został zminimalizowany przy jednoczesnym spełnieniu wymogów niezawodności i dostępności podczas cyklu życia produktu. Do obliczenia czasowo zależnej niezawodności wykorzystano metodę analizy niezawodności pierwszego rzędu (FORM). Możliwość praktycznego wykorzystania proponowanych modeli zilustrowano przykładem.
Reliability - based design incorporating several maintenance policies
Traditional reliability-based design optimization (RBDO) minimizes a cost-type objective function subject to reliability constraints. The reliability constraints are based on physical models, such as finite element simulation, which are used to specify the state of a component or a system. Hence the reliability is the so-called physical reliability. The reliability constraints are usually static without accounting for product lifecycle issues. In this work, several reliability-based design optimization models incorporating several maintenance policies are proposed. The product lifecycle cost is minimized while the constraints of product lifecycle reliability or availability are satisfied. The First Order Reliability Method (FORM) is employed to calculate the time dependent reliability. An engineering example is used to illustrate the proposed models.
Analiza funkcji opisującej koszty w dynamicznym projektowaniu w warunkach niepewności
Dynamiczne projektowanie w warunkach niepewności uwzględniające problem cyklu życia staje się coraz bardziej atrakcyjnym podejściem w projektowaniu inżynieryjnym. Jednym z ważniejszych zadań jest obliczenie na etapie projektowania kosztu cyklu życia, który można wykorzystać jako funkcję celu lub jako ograniczenie. Koszt cyklu życia to suma wszystkich kosztów poniesionych podczas cyklu życia produktu, wliczając w to koszty projektu, rozwoju, produkcji, eksploatacji, obsługi, wspomagania obsługi oraz likwidacji. W artykule analizujemy kilka modeli kosztu cyklu życia i ilustrujemy ich zastosowania. Następnie, biorąc pod uwagę modele kosztu cyklu życia, budujemy modele projektowania zorientowanego na niezawodność (design-for-reliability models), projektowania w granicach zadanej niezawodności (design-to-reliability models) oraz projektowania odpornego (robust design model). Modele te, poprzez uwzględnienie problemów związanych z cyklem życia, mogą pomagać inżynierom w przygotowaniu niezawodnych i odpornych projektów produktów bądź systemów.
Strony
- 1
- 2
- 3
- 4
- 5
- 6
- następna ›
- ostatnia »