Edward Michlowicz
A method for evaluating and upgrading systems with parallel structures with forced redundancy
The objects of the study are parallel-structure machine systems with redundancy associated with safety assurance of continuous material flow. The problem concerns systems in which the supply of materials takes place continuously (24 hours a day), and the system of operated machines must ensure the receipt and movement of the material at a strictly defined time and in the desired quantity. It is a system where the presence of a failure poses a threat to human life and environmental degradation. This paper presents a method for system condition assessment and upgrading for maintaining proper operation under conditions of continuous operation. A database of information about the current parameters of the system components (measurements, monitoring) is necessary for condition assessment. The method also uses lean techniques (including TPM). System evaluation and selection criteria for a suitable structure in terms of further operation were proposed. Exemplification was performed for an underground mine drainage system. As a part of the identification, selected parameters of the system components were measured, and their characteristics (motors, pumps, pipelines) were developed. The results of the analysis and the values of the adopted criteria were compared to the indicators for new pump sets. A two-option system upgrade was proposed, in addition to machine operating schedules, maintenance periods, and overhaul cycles.
Assessment of the modernized production system through selected TPM method indicators
The subject of the studies is the evaluation of the operation of a production system after modernization. The analysed case concerns the modernization forced by the end of the product lifetime. The proposed methodology is that of a multicriterial evaluation of the system operation after modernization. The evaluation criteria are selected TPM indices: availability of machinery and equipment, production process capacity, product quality and overall equipment effectiveness (OEE). The additional criteria are reliability indices MTBF and MTTR of studied production lines and the MTTR of the most unreliable equipment in each analysed line. A yearly monitoring of production process was proposed for obtaining the statistical credibility of the evaluation results. Additionally, a fuzzy indicator of acceptability of the modernization assessment was proposed. The paper presents the results of studies of the system for production of zinc concentrate from post-production waste. The obtained values of OEE, MTBF and MTTR indicators for the three tested lines make it possible to state that the modernization carried out is acceptable.