data fusion
Podejmowanie decyzji eksploatacyjnych w oparciu o fuzję różnego typu danych
W ostatniej dekadzie coraz częściej stosuje się integrację systemów, która pozwala przedsiębiorstwom zwiększać wydajność procesów biznesowych. Nowością w zarządzaniu infrastrukturą techniczną jest zwiększanie efektywności już poczynionych inwestycji w systemy kontroli procesów. Pozwala to zespołom do spraw operacyjnych, utrzymania ruchu oraz kontroli procesów monitorować i ustalać nowe poziomy alarmowe na podstawie danych o stanie fizycznym maszyn krytycznych. Utrzymanie urządzeń zależne od ich bieżącego stanu technicznego (condition-based maintenance, CBM) to filozofia utrzymania ruchu opierająca się na tym masowym poborze danych, wedle której decyzje dotyczące naprawy lub wymiany sprzętu zależą od jego obecnego oraz przewidywanego przyszłego stanu technicznego. Ponieważ dotychczasowe badania były zdominowane przez problem technik monitorowania stanu dla konkretnych aplikacji, nie opracowano ogólnej metody wdrażania CBM opartej na eksploracji (data mining ) owych olbrzymich ilości zebranych danych, która miałaby zastosowanie w różnych domenach. Konieczna jest integracja danych z monitorowania stanu (condition monitoring, CM) z danymi dotyczącymi zarządzania pochodzącymi ze skomputeryzowanych systemów zarządzania utrzymaniem ruchu (CMMS), które zawierają informacje na temat uszkodzeń elementów składowych, dane związane z uszkodzeniami, a także informacje dotyczące obsługi lub napraw czy sterowania zapasami. Systemy te stanowią podstawę tradycyjnych praktyk obsługi planowej, a zasadzają się na całościowych obserwacjach dokonywanych na podstawie danych eksploatacyjnych, które pozwalają modyfikować regulowane działania obsługowe. Najbardziej oczywistą przeszkodą w integracji danych CMMS, danych procesowych oraz danych z monitorowania stanu jest rozbieżność ich natury. Dotychczas podjęto jedynie kilka prób rozwiązania tego problemu. Chociaż ostatnio wiele wysiłku włożono w gromadzenie i utrzymanie dużych zasobów tego typu danych, istnieje stosunkowo niewiele badań na temat możliwych sposobów powiązania owych zestawów danych. W prezentowanej pracy poczyniono próbę wypełnienia tej luki proponując metodologię łączoną opartą na eksploracji danych dla celów CBM, która bierze pod uwagę dane z monitorowania stanu i eksploatacyjne dane z zarządzania ruchem. W pracy przedstawiono integrację systemową danych fizycznych i danych z zarządzania, która wspiera także analitykę biznesową (business intelligence) oraz eksplorację danych, gdzie zestawy danych można łączyć w sposób nietradycyjny.
Maintenance Decision Making based on different types of data fusion
Over the last decade, system integration is applied more as it allows organizations to streamline business processes. A recent development in the asset engineering management is to leverage the investment already made in process control systems. This allows the operations, maintenance, and process control teams to monitor and determine new alarm level based on the physical condition data of the critical machines. Condition-based maintenance (CBM) is a maintenance philosophy based on this massive data collection, wherein equipment repair or replacement decisions depend on the current and projected future health of the equipment. Since, past research has been dominated by condition monitoring techniques for specific applications; the maintenance community lacks a generic CBM implementation method based on data mining of such vast amount of collected data. The methodology would be relevant across different domains. It is necessary to integrate Condition Monitoring (CM) data with management data from CMMS (Computer Maintenance Management Systems) which contains information, such as: component failures, failure information related data, servicing or repairs, and inventory control and so on. These systems are the core of traditional scheduled maintenance practices and rely on bulk observations from historical data to make modifications to regulated maintenance actions. The most obvious obstacle in the integration of CMMS, process and CM data is the disparate nature of the data types involved, and there have benn several attempts to remedy this problem. Although, there have been many recent efforts to collect and maintain large repositories of these types of data, there have been relatively few studies to identify the ways these to datasets could be related. This paper attempts to fulfill that need by proposing a combined data mining-based methodology for CBM considering CM data and Historical Maintenance Management data. It shows a system integration of physical and management data that also supports business intelligence and data mining where data sets can be combined in non-traditional ways.
Badania dotyczące oceny niezawodności silników lotniczych w oparciu o uszkodzenia konkurujące
Silnik samolotu to złożony system naprawialny, w którym różnorodność przyczyn uszkodzeń zwiększa trudność oceny niezawodności. Dlatego też istnieje konieczność ustalenia dynamicznych związków pomiędzy danymi, przyczynami uszkodzenia i niezawodnością systemu, których znajomość pozwoliłaby przeprowadzać naukową ocenę niezawodności silników lotniczych. W prezentowanej pracy wykorzystano metodę fuzji danych do opracowania modeli oceny niezawodności w zakresie uszkodzeń wynikających z obniżenia charakterystyk oraz uszkodzeń nagłych. Ponadto, opracowane modele zintegrowano na podstawie mechanizmu uszkodzeń konkurujących. Do analizy wpływu dwóch omawianych typów uszkodzeń na niezawodność silników lotniczych wykorzystano procedurę bayesowskiego uśredniania modeli. Dzięki powyższym krokom, osiągnięto założony cel dokładnej oceny niezawodności silników samolotowych. Przykład pokazuje skuteczność proponowanego modelu.
A reliability evaluation study based on competing failures for aircraft engines
Aircraft engine is a complex and repairable system, and the diversity of its failure modes increases the difficulty of reliability evaluation. It is necessary to establish a dynamic relationship among data, failure mode and system reliability, to achieve the scientific reliability evaluation for aircraft engines. This paper has used data fusion method to establish reliability evaluation models respectively for performance degradation failures and sudden failures. Furthermore, these two models have been integrated on the basis of competing failures’ mechanism. Bayesian model averaging has been used to analyze the impacts of performance degradation failures and sudden failures on aircraft engines’ reliability. As a result of above, the goal of an accurate evaluation of the reliability for aircraft engines has been achieved. Example shows the effectiveness of the proposed model.
Analiza niezawodności eksploatacyjnej silników lotniczych w oparciu o metodę rozmytej maszyny wektorów nośnych (FSVM)
Silnik samolotu to złożony system naprawialny, a różnorodność przyczyn jego uszkodzeń zwiększa trudność analizy niezawodności eksploatacyjnej. Istnieje konieczność ustalenia dynamicznych związków pomiędzy monitorowaniem informacji, przyczynami uszkodzeń i niezawodnością systemu, których znajomość pozwoliłaby przeprowadzać naukową analizę niezawodności silników lotniczych. Do integracji danych z monitorowania informacji, w pracy wykorzystano metodę rozmytej maszyny wektorów nośnych (FSVM). Dla różnych przyczyn uszkodzeń, przedstawiono odpowiednie modele analizy niezawodności – model procesu Gamma i model procesu Wienera. Przedstawione modele zintegrowano na podstawie mechanizmu uszkodzeń konkurujących. Do analizy wpływu różnych przyczyn uszkodzeń na niezawodność silników lotniczych wykorzystano procedurę bayesowskiego uśredniania modeli. Dzięki powyższym krokom, osiągnięto założony cel dokładnej analizy niezawodności silników samolotowych. Przykład pokazuje skuteczność proponowanego modelu.
Operation reliability analysis based on fuzzy support vector machine for aircraft engines
The aircraft engine is a complex and repairable system, and the diversity of its failure modes increases the difficulty of operation reliability analysis. It is necessary to establish a dynamic relationship among monitoring information, failure mode and system reliability for achieving scientific reliability analysis for aircraft engines. This paper has used fuzzy support vector machine (FVSM) method to fuse condition monitoring information. The reliability analysis models including Gamma process model and Winner process model, respectively for different failure modes, have been presented. Furthermore, these two models have been integrated on the basis of competing failures’ mechanism. Bayesian model averaging has been used to analyze the effects of different failure modes on aircraft engines’ reliability. As a result of above, the goal of an accurate analysis of the reliability for aircraft engines has been achieved. Example shows the effectiveness of the proposed model.
Multi-level health degree analysis of vehicle transmission system based on PSO-BP neural network data fusion
In order to realize the evaluation of the vehicle transmission system health degree, a prediction model by multi-level data fusion method is established in this paper. The prediction model applies PSO(Particle Swarm Optimization)-BP(Back Propagation) neural network algorithm, calculates the whole machine health degree and each module respective weights from the test data. On this basis, it analyzes the error between the model calculated health degree and theoretical health degree. Then the research verifies the validity and prediction model accuracy. The health degree which is obtained by the single module feature parameters fusion, and the vehicle transmission system health degree is investigated, which is less effective compared to the three-level fusions. After that, by analyzing the vehicle transmission system multi-parameter feature weights, it is found that the mechanical module accounted for the largest damage rate, and the three modules influenced the vehicle transmission system health degree in the order of mechanical module, hydraulic module, and electric control module. The study has played a guiding role in the health management of complex equipment.